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Abstract. A new mechanism of superfast motion of resistive domains in anisotropic super-
conductors is suggested. For bicrystals or sandwiches of anisotropic superconducting materials, the
superfast motion is shown to arise due to the additional Joule heating of the kink regions of a resistive
domain by eddy currents associated with them. Conditions under which the resistive domain in
an anisotropic superconductor moves with a velocity up to the Fermi velocity,∼108 cm s−1, are
discussed. As a result of the superfast motion, generation of electric oscillations of high amplitude
with frequencies up to 1010 Hz can take place.

It has been theoretically and experimentally proved that, under Joule heating, temperature–
electric field bistability and resistive (electric) domain instabilities may exist both in super-
conductors [1–7] and in normal metals [3,8–12].

In a superconductor the bistability can appear at currents whose magnitudes are less than
the critical current but large enough to heat the metal (when it is in the normal state) up to
temperatures higher than the critical one. As a result, a resistive domain (RD) (that is, a ‘hot
spot’, which is a normal-metal region of a finite size; the temperature of the ‘hot spot’ is higher
than the critical temperature of the superconductor) spontaneously arises in a long enough
bridge of a superconductor. At the same time this domain is a domain of the electric field (the
resistive domain is stable under the condition that the voltage applied to the sample is kept
fixed) [1–3].

In a normal metal under Joule heating at low temperatures, the bistability appears due to
the sharp dependence of the metal resistivity on temperature. In this case the current–voltage
characteristic of the metal is N-shaped with a negative differential conductivity associated
with the range of temperatures (reached due to the Joule heating) where the electron–
phonon scattering dominates over the electron–impurity scattering. At the applied voltage
corresponding to this heating, a temperature–electric field domain (TED) spontaneously arises
in a long enough metallic wire [3,8–12].

We note here that in contrast to those in semiconductors, temperature–electric field
domains in normal metals and resistive domains in superconductors develop under the
condition of local electric neutrality; that is, these domains are inhomogeneous distributions
of the temperature and the electric field along the sample length, while the charge remains
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homogeneously distributed (with an accuracy of the order ofλF /L0 � 1 whereλF andL0

are the Fermi wavelength and the characteristic length in the domain, respectively) providing
that there is electric neutrality at every point of the sample; see, e.g., [3].

Under the conditions that the sample and the heat removal are homogeneous, for the
case of isotropic thermal and electric conductivities, RDs and TEDs can move only due
to the thermoelectric effect [3, 8, 9, 13, 14]. Since the thermoelectric coefficient of a metal
(see, e.g., [15]) is proportional tokBT /εF � 1 (kB is Boltzmann’s constant andεF is the
Fermi energy), the thermal domain velocityv is so small (v ∼ 10−1–102 cm s−1) that even
weak inhomogeneities lead to pinning of the domain. In [16] an anisotropy in the thermal
conductivity of a normal metal was shown to increase the TED velocity by several orders of
magnitude. In order to realize this situation for superfast motion of TEDs in normal metals, a
specially prepared sample placed in a strong magnetic field was proposed in [16].

However, fast motion of neither resistive domains in superconductors nor temperature–
electric field domains in normal metals has been observed in experiments carried out so far.
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Figure 1. Top: the sandwich composed of two anisotropic metals with the interface boundary along
the bridge (the coordinate axisz is perpendicular to the interface boundary; the axesx andy are in
its plane with thex-axis directed along the main current direction). Bottom: the inhomogeneous
distribution of the temperature in the resistive domainTD(x).

In the present paper a new mechanism of superfast motion of resistive domains (‘hot spots’)
in superconductors,TD(x), with anisotropic resistivity is proposed, and conditions under which
the resistive domain moves with a velocity close to the Fermi velocity,∼108 cm s−1, are
discussed [17]. The basis of the mechanism suggested is an additional Joule heating of the
transition regions (kink regions) of a resistive domain caused by eddy currents that arise there
due to the inhomogeneous distribution of the temperature in the resistive domainTD(x) (the
coordinate axisx is in the direction of the current along the bridge—see figure 1; these eddy
currents arise in a bridge of a metal with anisotropic resistivitiesρik(T ), i, k = x, y, z).

As these eddy currentsEj (1) associated with the kink regions should vanish for homo-
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geneous temperature distribution (in this case the resistivity tensor is independent of the
coordinates), they are proportional to∂TD/∂x; that is, they flow in opposite directions in
the left-hand and right-hand kinks of the RDs. On the other hand, the direction of the main
currentEj (0) is fixed, and the additional Joule heating of the kink regions by the eddy currents

δ( Ej · EE) = (ρxk + ρkx)j
(0)
x j

(1)
k ∝ ∂T /∂x

can, in principle, decrease the Joule heating of one kink and increase that of the other (EE is the
electric field; summation with respect to the double subscript is assumed). If this is the case,
one end of the resistive domain is additionally effectively heated and the other is additionally
effectively cooled by the eddy currents, and the temperature distributionTD(x) is shifted to the
warmer region; that is, the resistive domain moves together with the eddy currents associated
with the kinks [18].

However, for a bridge with a homogeneous resistivity in the cross-section, the additional
Joule heating averaged over the cross-sectional area

δ( Ej · EE)
(here and below the bar indicates averaging over the cross-section of the bridge) is equal to
zero (in the first and the following odd approximations in thed/L0 � 1 parameter,d is the
ratio between the cross-sectional area and its perimeter, andL0 is the characteristic length of
the kink regions), and hence the eddy currents do not affect the motion of the resistive domain.
The situation changes qualitatively if the bridge is a bicrystal or a sandwich of two different
anisotropic metals (see figure 1). In this case the additional Joule heatings are different in
the uppermost and the lowest layers of such a bridge. As a result the additional Joule heating
averaged over the cross-sectional area of the bridge is not equal to zero, being of opposite sign
in the left-hand and right-hand kinks (as the heatings are proportional to∂T /∂x), which causes
superfast motion of the resistive domain.

In order to show this, below, the additional Joule heating by the eddy currents is calculated
for a long (of lengthL) superconducting bridge of a sandwich geometry with a resistive domain
(that is a ‘hot spot’) inside it. The sandwich is composed of two anisotropic metals with the
interface boundary along the bridge (see figure 1; the coordinate axisz is perpendicular to the
interface boundary; the axesx andy are in its plane with thex-axis directed along the main
current direction). The metals have different resistivity tensorsρ

(±)
ik (T ); superscript ‘(+)’ and

superscript ‘(−)’ refer to the uppermost and the lowest layers of the sandwich, respectively.
The inequalityd � L0 � L is assumed to be satisfied. For the sake of simplicity we also
assume that

ρ(+)αx /ρ
(+)
xx = ρ(−)αx /ρ

(−)
xx ≡ βα(T ) (α = y, z)

because it eliminates the eddy currents that otherwise appear in the absence of the resistive
domain due to the inhomogeneity in the cross-section of the sandwich (these currents are
irrelevant to the problem as they do not affect the resistive domain motion).

Under the above assumptions, in the zeroth approximation ind/L0 � 1 the Maxwell
equations and the boundary conditions are satisfied with the following current and electric
field:

j
(±)
x,0 (TD(x)) =

ρ(∓)xx

S(+)ρ(−) + S(−)ρ(+)
I Ek,0 = ρ(+)kx j (+)x,0 = ρ(−)xk j

(−)
x,0 (1)

whereI is the total current through the bridge.
In order to find the velocity of the ‘hot spot’TD(x), we need know not the distribution of

the eddy currents in the bridge but just that of those averaged over the bridge cross-section,
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because in the first approximation ind/L0� 1 the velocity is determined by the Joule heating:

δ Ej · EE ≈ ρ(s)xα j (0)x j
(1)
α

(hereρ(s)xα ≡ (1/2)(ρxα + ραx)). This permits us to solve the problem for an arbitrary form
of the bridge cross-section in the following simple way. We multiply Maxwell’s equation for
the current by 2Eα,0(T (x))βα(T (x) and integrate it over the sandwich cross-sectional area.
Integrating by parts, and taking into account the boundary conditions for the current (jα = 0
on the surface of the bridge andj (+)z = j (−)z on the interface boundaryz = 0), we get the
following Joule heating of the sandwich by the eddy currents averaged over the cross-section
of the sandwich:

δ( Ej · EE) = γ (∂T )∂T
∂x

γ (∂T ) = βz(T )
(
S(+)ρ(−)xx (T )− S(−)ρ(+)xx (T )
S(+)ρ

(−)
xx (T ) + S(−)ρ(+)xx (T )

)′
(〈z〉(+) − 〈z〉(−))(j0E0).

(2)

Here

〈z〉(±) = (1/S(±))
∫
S(±)

z dy dz.

The prime means the derivative with respect to temperature;j0 = I/(S(+) + S(−)).
The hot-spot velocityv is determined by the condition that the motion of the kinks

compensates for the additional heat liberated inside them:

c
(0)
V T

(0)v ∼ δ( Ej · EE)L0

(cV is the heat capacity of the metal per unit volume;T (0) is the characteristic temperature of
the resistive domain). From this and equation (2), it follows that the hot-spot velocity can be
estimated as

v ∼ ρ(+)xx − ρ(−)xx

ρ
(0)
xx

(ρ(0)xz j
(0)2
x )d/T (0)c

(0)
V . (3)

Thus, the resistive domain velocity does not contain small factors of the typekBT /εF .
The resistive domain dynamics in a thin sandwich is described by an effective equation for

the thermal conductivity for the temperatureT = T (x, t). This equation can be obtained by
averaging the three-dimensional equation for the thermal conductivity over the sample cross-
section. If one expands the temperature in a power series ind/L0, and confines consideration
to the approximation quadratic ind/L0, one gets

cV (T )
∂T

∂t
− γ ∂T

∂x
− ∂

∂x

(
κeff (T )

∂T

∂x

)
= f (T , j0)

f (T , j0) = j0E0 − 〈qs(T )〉/d.
(4)

Hereκeff = (1/λ−1
xx ) is the effective thermal conductivity,λ±ik(T ) which are present in the

cross-sectional average are the thermal resistivity tensors for the upper and lower metals of the
sandwich,qs(T ) is the heat flux from a unit surface of the sample, and〈· · ·〉 indicates averaging
along the contour of the cross-section.

The drift term in the effective thermal conductivity, equation (4), is smaller than the
remaining terms by a factor ofd/L0. This leads to the following formula for the velocityv of
the resistive domainT = TD(x − vt):

v =
∫ Tmax

T0

[
[γ (T )

√
W(T, jc) dT ]

/(∫ Tmax

T0

cV (T )
√
W(T, jc) dT

)]
(5)
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where

W = −
∫ T

T0

κeff (T1)f (T1, j) dT1.

T0 is the temperature of the cooling medium,Tmax is the temperature of the hot part of the
resistive domain; and the currentjc is determined by the equationW(Tmax, j) = 0. Expressions
(2) and (5) give an estimate for the velocity that coincides with equation (3) [19].

From equation (3) and equation (5) it follows that the velocityv of the resistive domain
increases as the applied voltage is increased while the maximal temperatureT(max) is kept as
low as possible. It can be reached if the external heat removalqs is improved. However,
increase of the heat removal is limited by the maximal possible heat flux inside the sample.
According to the heat current conservation law, an increase of the external heat-removing flux
qs (together with an increase of the Joule heating) leads to an increase of the transverse heat
flux q(i)z inside the sample. But the maximal possible value ofq(i)z is

q
(i)

(max) ∼ κ(i)0 T/l
(i)
0

(κ(i)0 andl(i)0 are the characteristic values of the thermal conductivity and the heat-carrier free
path length inside the metal of the sample), and therefore from equation (3) and the estimate
of the maximal possible Joule heating(j0E0)d ∼ q(i))(max), it follows that the maximal possible
velocity of the thermal domains is

v(max) ∼ (κ(i)0 T/l
(i)
0 )/(c

(i)
V T ) ' v(i) (6)

(c(i)V is the heat capacity of the sample metal, andv(i) is the velocity of the heat carriers in the
sample). Therefore the maximal velocity is obtained if the heat removal through the external
mediumqs reachesq(i)(max). This can be achieved if two conditions are satisfied: (1) the heat-
removal medium is a metal whose thicknessd(e) is less than or of the order of the free path
length of the electrons inside the external metall

(e)
0 , and (2) the maximal temperatureTmax in

the resistive domain is close to liquid helium temperature. Hence in bridges of superconducting
anisotropic conventional metals, resistive domains can move at velocities of the order of the
Fermi velocity,vF ∼ 108 cm s−1. For highly anisotropic HTSC material with a critical
temperatureTc close to helium temperatures, the maximal velocity of the resistive domain is
of the order of the sound velocity,s ∼ 105 cm s−1, if Tc is in the range of temperatures for
which the thermal conductivity of the HTSC material is determined by phonons; if the thermal
conductivity is determined by electrons, the maximal resistive domain velocity is of the order
of the characteristic velocity of electrons of the HTSC material (see equation (6)).

It seems that an experimental observation of the superfast motion of resistive domains
in superconductors could be of a great interest, as it can lead to the generation of electric
oscillations of high amplitude and of high frequency, up to 1010 Hz.
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